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Abstract. We build the exact solution and the instantaneous diagonalization of a quantum
system exhibiting aSU(2) or SU(1, 1) dynamical symmetry. A generalized displacement
operator determines in both cases the temporal evolution and the diagonalization operators of
the system. These operators can be used to characterize the exact and the adiabatical evolution
of both periodical and cyclic states whose exact and adiabatical phases can be explicitly found.
We consider two examples: a charged particle in the presence of a rotating magnetic field and
the degenerate optical parametric oscillator. In particular we present and calculate nontrivial
geometrical and dynamical phases for the optical parametric oscillator depending upon the
coupling parameter that could indeed be measured using an adequate optical experiment.

1. Introduction

Since Berry’s discovery [3] that in a sufficiently slow evolution all initial eigenstates of a
quantum system driven by a cyclic time-dependent Hamiltonian must incorporate a nontrivial
geometrical phase, the interest of the scientific community on this problem has been steadily
increasing. A large body of literature exists which attempts to study the nature of such a
phase more closely [22], to connect it with the group-theoretical structure of the system
[2, 14] or to generalize it to all types of dynamical journeys (not necessarily of adiabatic
nature) [1]. A general method of calculation [17, 18], that can be confronted with the feasible
experiments [8, 9], [15] has also been built. However, we believe that in all of these works
a set of phenomena certainly related but different in nature are being described whose close
connection has not yet been sufficiently clarified. For example, while Berry [4] analysed the
behaviour of the instantaneous eigenstates of a physical system in an adiabatical and closed
excursion of its Hamiltonian, Aharonov and Anandan [1] considered the cyclical and exact
evolution of one of the physical states of the system without requiring even the existence
of a Hamiltonian. In this line, Moore and Stedman [17, 18] required additional periodicity
conditions for the Hamiltonian. It is obvious that all of these dynamical evolutions are not
equivalent and can or cannot occur simultaneously. While the quantal adiabatic theorem
guarantees theT -cyclic character of the initial eigenstates of a certain system, the exact
evolution of these states does not have to be necessarily closed. It could also happen that
given both a system and a certain time of evolutionT , no cyclic trajectory in the space of
the physical states could be found for this givenT and a closed evolution in the sense of
Aharonov and Anandan would then be impossible. Therefore a method of characterization
of cyclical states [23] for a given Hamiltonian system seems to be neccessary. When
a dynamical symmetry is known and its exact solution is available, the time evolution
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operator can be used for this purpose and the identification of the cyclical (and eventually
periodic) states [18] follows as a consequence.

This paper is organized as follows. In sections 1 and 2 we summarize the properties
of the Lie algebrasu(2) andsu(1, 1) which seems necessary to obtain in sections 3 and 5
the instantaneous diagonalization and the exact time evolution of a quantum system with
any such dynamical symmetries. The instantaneous eigenstates of the system are unitarily
related to the generators of the representation space by means of a generalized displacement
operator algebraically determined by the parameters of the system. In section 4 we show
that the temporal evolution of this operator is sufficient to determine the quantum phases
of the system. The time evolution operator yielding the instantaneous eigenstates is also a
displacement operator whose characterization requires us to solve a second-order differential
equation which is determined by the parameters of the system. We have also shown that this
equation is in fact the classical equation of motion (for systems with a classical analogue).
Hence, the classical solution is enough to solve the quantal problem.

In sections 6 and 7 we show how the time evolution operator can be used to characterize
the possible cyclical states and show how to calculate the phases appearing by virtue of this
transformation. The two cases corresponding to an aperiodical and a periodical Hamiltonian
are considered in section 8.

Finally, in sections 9 and 10 we consider two particular systems: a spinj -particle in
a rotating magnetic field and the degenerate optical parametric oscillator. The two systems
possess closed trajectories in both the parameter space and the physical space (the space
of the rays); the corresponding states and its phases are determined. In particular, we have
also found that the initial eigenstates of an optical parametric oscillator with a sufficiently
low frequency must incorporate in each cycle of evolution of the optical field a Berry phase
depending on the intensity of the interaction between the electromagnetic field and the active
optical medium.

2. The su(2) and su(1, 1) Lie algebra

We consider three operatorsK0 = K+0 andK++ = K− verifying the following commutation
relations:

[K0,K±] = ±K± [K+,K−] = 2gK0. (2.1)

Wheng = +1 andg = −1 these operators yield a unitary realization of the triparametric
algebrassu(2) and su(1, 1) respectively. The representation space [25] is generated by
simultaneous eigenstates of bothK0 and the quadratic Casimir operator

C2 = K2
0 +

g

2
(K+K− +K−K+) = k(k + g). (2.2)

These states are described by two quantum numbers|k, n〉 and the action of the generators
of the algebra on the states is summarized in table 1.

Table 1.

su(2) su(1, 1)

K+|k, n〉
√
(k − n)(k + n+ 1)|k, n+ 1〉 √

(n+ 1)(n+ 2k)|k, n+ 1〉
K−|k, n〉

√
(k + n)(k − n+ 1)|k, n− 1〉 √

n(n+ 2k − 1)|k, n− 1〉
K0|k, n〉 n|k, n〉 (k + n)|k, n〉
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Wheng = 1 only a set of discrete unitary representations with non-negative values ofk,
integer or half-integer. The states|k, n〉 are identified as the states of spink and projection
n = −k,−k+ 1, . . .0 . . . k− 1, k that are the basis of a unitary and compact representation
of su(2) with a finite dimension 2k + 1.

When g = −1 there exist discrete or continuous unitary representations [25]. In
particular we shall use a realization ofsu(1, 1) generated by quadratic products of bosonic
operators,

K0 = 1
2(a
+a + 1

2) K− = K++ = 1
2a

2 (2.3)

in which case,k may only have two valuesk = 1
4 or 3

4 and n must be an arbitrary
non-negative integer. The states|k, n〉 are eigenstates of the number operator and can be
identified in this realization as the oscillator-even states and oscillator-odd states respectively
both generating noncompact unitary representations of infinite dimension

| 14, n〉 = |2n〉 | 34, n〉 = |2n+ 1〉. (2.4)

3. Factorization of operators

As is well known [7] an element of the groupSU(2) can be obtained by exponentiation
of an element of the corresponding algebra. It is also well known that we can write down
this element in many equivalent factorized ways. This method can also be generalized
to describe the fragmentation of aSU(1, 1) elements. The Baker–Hausdorff–Campbell
formula allows us to express all unitary elements ofSU(1, 1) obtained by exponentiation
of an anti-Hermitic element ofsu(1, 1) as†

U = exp{ρK+ − ρ∗K− + 2ibK0} = exp{aK+} exp{cK0} exp{dK−}
= exp{ηK+} exp{γK0} exp{−η∗K−} exp{ihK0} (3.2)

whereb is a real number and

η = ρ

1

tan1

1− i(b/1) tan1
(3.3)

γ = log{1+ g|η|2} (3.4)

h = 2 arg tan

{
b

1
tan1

}
h ∈ [−π, π ] (3.5)

1 =
√
b2+ g|ρ|2. (3.6)

This factorization is valid forSU(2) (g = 1) and forSU(1, 1) (g = −1). In the latter
case this is also possible for all possible values of1. For imaginary values of1 in formulae
(3.3)–(3.6) the term (1−1 tan1) becomes (1′−1 tanh1′) with 1′ = √−12 keeping its real
character. Moreover, wheng = −1, |η| 6 1 for any value ofρ andb in such a way that
γ is real for all cases too. The correspondence(γ, b) ⇐⇒ (η, h) described by formulae
(3.3)–(3.6) can thus be inverted. If we characterize the element by the parametersb (real)
andz = ρ/b (complex) we always have:

z = η e−ih/2

sin(h/2)
(3.7)

†

exp{ihK0} exp{zK−} = exp{ze−ihK−} exp{ihK0} (3.1)
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b = 1√
1+ g|z|2

arg tan
{√

1+ g|z|2 tan(h/2)
}
. (3.8)

If g = 1 ◦ g = −1 and |z| < 1 the periodic character of the function in the argument
of (3.8) makes the solution forb not unique. Hence, all operators with characteristic
parameters(z, b) and(zb′, b′) beingb′ = b+ sπ(1+g|z|2)−1/2 (with s an integer) have the
same factorization(η, h). If g = −1 and|z| > 1 the tangent function becomes a hyperbolic
tangent and has a one-to-one correspondence. In particular when one considersb = 0 and
ρ = reiφ we recover the well known factorization formulae [11] for the generators of the
generalized Perelomov coherent states [19]:

S(ρ) = expρK+ − ρ∗K− = expηK+ expγK0 exp−η∗K− = S(η) (3.9)

h = 0 η = tanreiφ for SU(2) (3.10)

h = 0 η = tanhreiφ for SU(1, 1). (3.11)

In the case ofSU(1, 1) the displacement operatorS(ρ) = S(η) enjoys several interesting
properties as opposed to theSU(2) case. This is due—at least mathematically—to the
presence in the factorization of the former case of bound functions as the hyperbolic tangent.
When the vacuum or a nontrivial coherent state is transformed [21], the quantum noise
dispersion properties of these states drastically changes. The fluctuations of the position
or momentum operators are reduced under its vacuum value and a new type of quantum
states—the squeezed states—are generated. These states represent strictly quantum effects
of light with a well-defined amplitude and phase, and with properties which depend on the
parametersr and φ. Although it is interesting from the group theoretical point of view
the caseb = 0 is just a particular case of factorizable operator. In general for any unitary
element ofSU(1, 1) with |ρ| > |b| one can factorize it with the help of a squeezing operator
S(β) in the form:

U = exp{ρK+ − ρ∗K− + 2ibK0} = exp{βK+ − β∗K−} exp{ihK0} (3.12)

tanh|β| = |ρ| sinh1′√
|ρ|2 cosh21′ − b2

(3.13)

argβ = argρ + h
2

(3.14)

h = 2 arg tan
b

1′
tanh1′ (3.15)

1′ =
√
|ρ|2− b2. (3.16)

Thus all unitary operators of the form (3.12) can be put in the form of a squeezed state
operator in the form described above.

4. The instantaneous diagonalization

We shall now consider a physical system described by the Hermitian Hamiltonian

H(t) = f (t)K+ + 2Z(t)K0+ f ∗(t)K− (4.1)

wheref (t) = X(t) + iY (t), andX(t), Y (t), Z(t) are time-dependent real functions with
arbitrary initial conditions. Using the operatorsK0 and K± introduced in the previous
section,H(t) can be written as a Hermitic element of the Lie algebrasu(2) or su(1, 1)
depending on the value ofg. In order to build the instantaneous eigenstates and the solution
of H(t) we shall deal with both cases on the same footing by using the generalized coherent
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states of the corresponding symmetry group [19]. According to Perelomov the generalized
coherent states can be obtained by applying to the ground state the generalized displacement
operatorS(β) = S(η) of the type (3.9). The main idea for constructing (3.9) is to use the
Cartan subalgebra of the corresponding symmetry group. The details can be found in [19].

S(η)K−S+(η) = 1

1+ g|η|2 {K− + 2gηK0− gη2K+} (4.2)

S(η)K0S
+(η) = 1

1+ g|η|2 {−η
∗K− + (1− g|η|2)K0− ηK+} (4.3)

S(η)K+S+(η) = 1

1+ g|η|2 {−gη
∗2K− + 2gη∗K0+K+}. (4.4)

If we consider the parameterβ = β(t) (or η = η(t)) as a time-dependent function
we may also consider that the time dependence ofH(t) is originated by the action of a
time-dependent unitary transformation† over an essentially static system.H(t) can then be
expressed at each instant of time as:

H(t) = 2F(t)S(η0)K0S
+(η0) (4.5)

for any values ofF(t) andη0(t) which are algebraically determined by the functions of the
Hamiltonian. In particular:

F(t) =
√
Z(t)2+ g|f (t)|2 (4.6)

η0(t) = − f (t)

Z(t)+ F(t) . (4.7)

Therefore, the instantaneous eigenstates ofH(t) can be written as|η0(t), k, n〉
|η0(t), k, n〉 = S(η0(t))|k, n〉 (4.8)

with a time-dependent ‘eigenvalue’ (〈K0〉 = 〈k, n|K0|k, n〉)
Ek,n(t) = 2〈K0〉

√
Z2+ g|f |2 (4.9)

which is obtained by means of the action ofS(η0) on the stationary eigenstates ofK0.
F(t) is real for any value of the parameters ifg = 1, but only when|Z| > |f | if
g = −1. Here an important difference between the dynamical symmetriesSU(2) and
SU(1, 1) is emphasized. All of the Hermitian elements of the former case are unitarily
related to the generator of its Cartan subalgebra. In contrast, just a few elements of the
latter case verify this property. Physically, this property has an important consequence. Any
physical system whose dynamical system wassu(2) could be instantaneously diagonalized
in an orthonormal set of vectors obtained by the action of a perfectly identified generalized
displacement operator on the purely static eigenbasis ofK0. Moreover, as this eigenbasis
is nondegenerate, this property is preserved. However, when the symmetry issu(1, 1), the
existence of this type of eigenvectors can only be defined for times that verify|Z| > |f |.
This is the necessary and sufficient condition for the physical system under study to have a
well-defined fundamental state. Other possibilities cannot be physically acceptable [26].

5. The Berry phase

The physical system described byH(t) depends on time through a set of parameters
R = {X(t), Y (t), Z(t)} controlling the external forces or acting on the system. This set may

† Not unique.
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be interpreted as a vector of coordinatesX(t), Y (t), Z(t). As time passes the vector draws
a curve inR3: the parameter manifold, described by a set of parametric equations given by
R = {X(t), Y (t), Z(t)}. We consider in this system a closed or cyclic evolution in the space
of the parameters in such a way that after a timeT the functions of the system take its initial
values again. The Hamiltonian then recovers its initial functional form. When the journey’s
pace ofR across the parameter space is infinitely slow (the functionsX(t), Y (t) y Z(t)
are slowly variable functions of the time) the quantum adiabatic theorem [16] guarantees
that after the journey the initial eigenstate acquires a phase. This phase adds to the purely
dynamical term

Dk,n = −1

h̄

∫ T

0
〈η0(t), k, n|H(t)|η0(t), k, n〉 dt = −2

h̄
〈K0〉

∫ T

0

√
Z2+ g|f |2 dt (5.1)

another term of geometrical character that is obtained by means of the circulation of a
vector [4] along the closed curve which represents the transformation in parameter space.
Alternatively, the geometrical contribution can be obtained by evaluating the flux of the
rotational of this vector across the surface of this space contained within the above-
mentioned closed curve. This vector,

v = 〈n(R)|GradR|n(R)〉 (5.2)

can be built using the instantaneous eigenstates ofH(t). When the characterization of
these states in terms of a displacement operatorS is available, a direct calculation of the
geometrical phase is in fact both feasible and possible. In fact as the eigenstates can be
identified in the form:

|n[R(t)]〉 = |η0(t), k, n〉 (5.3)

and since [5]:

S+(η)Ṡ(η) = η̇

1+ g|η|2K+ − g
η̇η∗ − ηη̇∗
1+ g|η|2 K0− η̇∗

1+ g|η|2K− (5.4)

we finally obtain the Berry phase as:

Bk,n = 〈K0〉
∫ T

0

(
1− Z√

Z2+ g|f |2

)
d(arg(f ))

dt
dt. (5.5)

The existence of a nontrivial Berry phase requires that the argument of the complex
parameter which characterizes the time-dependent system (with dynamical symmetrySU(2)
or SU(1, 1)) must indeed depend on time. For a set of nondegenerate states such as those
we have used here, one can define a two-form. This two-form represents the flux across
the surface in parameter space and also equals the magnitude of the Berry phase. It can be
extracted from:

Rotv = g R√
Z2+ g(|X|2+ |Y |2)3

(5.6)

Bk,n = g〈K0〉
∫ ∫

S

R dS√
Z2+ g(|X|2+ |Y |2)3

. (5.7)

Experimental measures of the Berry phase [4, 12], usually compare the state of the
system transported by the HamiltonianH(t) with the same state transported by the initial
Hamiltonian. The superposition of such a state gives a direct measure of the Berry phase.
Restricting the parameters space to the surface ofR3 given by

Z2+ g(X2+ Y 2) = R2 = constant (5.8)
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and the possible trajectory to any curveC on this surface, the Berry phase is obtained by
means of the flux of the Rotv across the part ofS encircled byC.

Wheng = 1, the surface is a sphere of radiusR and the Berry phase is reduced to the
well known result. The phase is a measure of the solid angle subtended by the closed curve
C on the surface, described by the parameter vectorR:

Bk,n = n
∫ ∫

�

d�. (5.9)

When g = −1, the parameter space can be visualized as the upper part of a two-
sheeted hyperboloid and the Berry phase can no longer be interpreted in terms of a solid
angle. However, the procedure used to obtain the value of the phase is quite similar to the
previous one. We have:

Bk,n = −
n+ 1

2

2R3

∫ ∫
S

R dS. (5.10)

6. Time evolution operator

The time evolution operatorU(t) corresponding toH(t) verifies the Schr̈odinger equation
and reduces itself to the identity fort = 0. It must be found among the unitary elements of
the symmetry group. This element can be built by exponentiation of a Hermitian element
of the algebra and can also be factorized as follows

U(t) = exp{β(t)K+ − β∗(t)K−} exp{ih(t)K0} (6.1)

whereh(t) and β(t) are respectively a real and complex function of time that must be
determined by the Schrödinger equation with the initial conditionh(0) = β(0) = 0. It has
been shown [5] that the Schrödinger equation is totally equivalent to the nonlinear Riccati
equation which is satisfied for the complex functionη(t).

η̇ = 1

ih̄
(f + 2Zη − gf ∗η2) η(0) = 0. (6.2)

After solving this equation, its solutionη(t) gives β(t) and h(t) after some trivial
quadratures. This completes the procedure to uniquely obtain the time evolution of the
physical system

h(t) = −1

h̄

∫ t

0
{2Z(s)− g[η(s)f ∗(s)+ f (s)η∗(s)]} ds (6.3)

β(t) = arg
{
tanh

(√−g |η|)} ei arg(η). (6.4)

The nonlinear Riccati equation can be easily linearized by means of the following change
of variables:

η(t) = g ih̄

f ∗
q̇(t)

q(t)
+ g

f ∗

(
Z + ih̄

ḟ ∗

2f ∗

)
(6.5)

h(t) = {2 arg[q(t)] − 2 arg[q(0)− arg[f (t)] + arg[f (0)]} (6.6)

that reduces the problem to finding a complex functionq(t) which must in turn be the
solution of the following second-order linear differential equation:

q̈(t)+�2(t)q(t) = 0 (6.7)

q̇(0)

q(0)
= i

h̄
Z(0)− ḟ ∗(0)

2f ∗(0)
(6.8)
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with the following time-dependent complex frequency

�2(t) = 1

h̄2 (Z
2+ g|f |2)− i

h̄

(
Ż − Z ḟ

∗

f ∗

)
+ f̈ ∗

2f ∗
− 3ḟ ∗2

4f ∗2
. (6.9)

Usually one should try to find this solution through a linear superposition of two independent
particular solutions of (6.7). Alternatively, one can consider that two exact copies of (6.7)
are in fact an Ermakov differential equation system [20]. These classical systems enjoy
the property of always possessing an invariant. Therefore one can conclude that only one
solution becomes necessary. We can build the other one by means of a quadrature. Let
q0(t) be a particular solution of (6.7). The linear superposition

q(t) = Aq0(t)+ Bq0(t)

∫
dt

q2
0(t)

(6.10)

depends on two arbitrary constantsA andB. It is the general solution of (6.7).
When g = −1, there exists an alternative linear system associated to the Riccati

equation (6.2) that is obtained with the following homogeneous change of variables

η(t) = 1− ξ(t)
1+ ξ(t) (6.11)

ξ(t) = i

(
h̄

Z−

q̇(t)

q(t)
− Im(f )

Z−
+ h̄Ż−

2Z2−

)
(6.12)

whereZ− = Re(f )− Z. The frequency of the linear equivalent equation (6.7) reads:

�2(t) = 1

h̄2 (Z
2− |f |2)+ 1

h̄

(
Im(f )

Ż−
Z−
− d

dt
Im(f )

)
+ Z̈−

2Z−
− 3Ż2

−
4Z2−

. (6.13)

This frequency is now real and it can be shown that for those systems with a classical
analogue such as the generalized harmonic oscillator [5] or the conformal oscillator the
equation (6.7) with frequency given by (6.13) is in fact the classical equation of motion.
Thus this procedure describes a reduction process that allows one to build the exact solution
to the quantum problem in terms of the exact solution of the equivalent classical problem.
More precisely, the exact evolution of any quantum state of a system withSU(1, 1)
dynamical symmetry and also possesing a classical analogue is determined by only one
real classical solution. Nothing of this nature can be found for theSU(2) case.

7. Characterization of the cyclic states

Let us now consider the process for which a given state of Hilbert space acquires a phase
after some timeT when evolving in a naturally driven way byU(t) (i.e. with no adiabatic
assumption involved). The evolution can be represented as:

|90〉 H⇒ U(t)|90〉 H⇒ U(T )|90〉 = eiϕ|90〉. (7.1)

It is important to emphasize at this point that the existence of these state vectors (hereafter
calledT -cyclic) is not guaranteed for a given system and/or a given timeT . Even when
they do exist there is nothing in the theory that forces them to be state vectors of the initial
Hamiltonian. The above-mentioned existence of this kind of state vector can be established
with the previous knowledge ofU(T ) and the following additional properties.

(i) A state vector can be said to beT -cyclic if and only if it is an eigenstate ofU(T ).
(ii) If U(t) can be written as:

U(t) = exp{iM(t)} M(t) = M+(t) (7.2)
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any eigenvector|8M(T )〉 of M(T ) is a T -cyclic state vector of the system.
(iii) After an interaction timeT , a T -cyclic state vector acquires a phase exp{iλM(T )}

that is obviously given through the set of eigenvaluesλM(T ) of M(T ).
For a physical system with aSU(2) or SU(1, 1) dynamical symmetry and for which

the Riccati equation (6.2) has been solved for any of the already described methods, the
functionsη(t) and h(t) should be known and the results of section 3 allows us to write
M(T ) as:

M(T ) = −ib(T ){x(T )K+ − x∗(T )K− + 2iK0} (7.3)

x(T ) = η(T )e−ih(T )/2

sin(h(T )/2)
(7.4)

b(T ) = 1

1(T )
arg tan{1(T ) tan(h(T )/2)} (7.5)

1(T ) =
√

1+ g|x(T )|2. (7.6)

The eigenvectors|8M(T )〉 of M(T ) are related to those ofK0 through a displacement
operatorS(ρ0(T )) of the form:

|8M(T )〉 = S(ρ0(T ))|k, n〉 (7.7)

whereρ0(T ) is given as in (4.7):

ρ0(T ) = i
x(T )

1+1(T ) . (7.8)

The corresponding eigenvalues are

λM(T ) = 2〈K0〉ωT T (7.9)

ωT = 1

T
arg tan

{
1(T ) tan

(
h(T )

2

)}
. (7.10)

If we now consider the instantaneous diagonalization properties they appear to be quite
different for thesu(2) andsu(1, 1) cases. Forsu(2) any element of the form (7.3) is always
diagonalizable. This means that if an arbitrary time interval of timeT is kept fixed, it is
always possible to find an ortonormalized collection ofT -cyclic states. If the system has
been prepared in one of these states ((7.7) forg = 1) it will return to the same state after
a timeT but having an extra phase given by (7.9). Moreover, the time evolution operator
can always be written in the form:

U(t) = exp i{2ωt tS[ρ0(t)]K0S
+[ρ0(t)]}. (7.11)

However, for thesu(1, 1) case the above properties do not generally hold. There only
exist cyclic states for those values ot the timeT with |x(T )|〉1 and the characterization
(7.11) forU(t) is not generally true for all instants of time. IfT is one of these permitted
values the possible cyclic states and its phases are given by (7.7)–(7.10) withg = −1. It is
important to emphasize that in both cases there is no reason for theseT -cyclic states to come
back to the initial situation in a periodic manner. They may come back once (T -cyclic) but
not twice or more repeteadly (T -periodic). We do not believe that this distinction has been
made yet in the current literature of the subject.
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8. Characterization of cyclic states in periodic systems

The process described in the last section is independent of the periodicity of the Hamiltonian.
TheT -cyclic states will beT -periodic too whenever solutionsx(t) exist that take the same
value after a timeT , regardless of whether the solutionsx(t) are periodic or not themselves

x(sT ) = x(T ) s = integer> 1. (8.1)

If we now impose toH(t) an additional periodicity condition [17, 18] there is in principle
no reason to assume that the cyclic states are just restricted to those whose characteristic
time of cyclicity coincides with the period ofH(t). Only the procedure described above
may uniquely characterize theT -cyclic states.

If the system has additionallyT -periodic states its period again may or may not coincide
with the period of the HamiltonianH(t). To identify these states we can use another
factorization ofU(t) different from the one given in (7.2). The Floquet theorem—a version
of the Bloch theorem that classifies the eigenfuctions of periodic potentials—establishes that
in a Hamiltonian system of periodicityT , U(t) can be factorized not uniquely [17, 18] by
means of a unitary operator with the same periodicity of the Hamiltonian and a constant
operator. Both are determined by the following time evolution operator:

U(t) = Z(t) exp{iM̃t} Z(t + T ) = Z(t) (8.2)

M̃ = − i

T
logU(T ) Z(t) = U(t) exp{−iM̃t}. (8.3)

The periodic states of the system are the eigenstates of a constant operatorM̃ that can be
constructed in terms of the above asM̃ = M(T )

T
. In turnM(T ) is given in (7.3) and must

now be obtained by means of a functionx(t) built with the help of a solutionη(t) of the
Riccati equation (6.2) that now has periodical coefficients of periodT . It is important to
point out again that there is no reason forη(t) to be a periodic function. The periodic
operatorZ(t) can also be built by using this functionη(t) which—as we have already
said—will not be, in general, periodic. Using the factorization formulae that we have used
frequently in this paper, we can write

exp{−iM̃t} = S[η′(t)] exp{−ih′(t)K0} (8.4)

and characterize in an explicit manner† Z(t) in various different although equivalent ways
as:

Z(t) = S(η) exp{ihK0}S(η′) exp{−ih′K0} = S(η”) exp{ih′′K0} (8.5)

where

η′(t) = −x(T ) tan(ωT t)

1(T )+ i tan(ωT t)
(8.6)

η′′(t) = η(t)+ η′(t)eih(t)

1− gη∗(t)η′(t)eih(t)
(8.7)

h′(t) = 2 arg tan

{
1

1(T )
tan(ωT t)

}
(8.8)

h′′(t) = h(t)− h′(t)+ i log
1− gη∗(t)η′(t)eih(t)

1− gη(t)η′∗(t)e−ih(t)
. (8.9)

†

S(η1)S(η2) = S(η) exp{ihK0} with η = η1 + η2

1− gη∗1η2
and h = i log

{
1− gη∗1η2

1− gη1η
∗
2

}
.
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9. Calculation of the geometrical phase

If the system is initially prepared in one of theT -cyclic states given by (7.7) the natural
evolution of these states yields after a timeT a phase factor of the general form exp{iλM(T )}
with λM(T ) given in (7.9). The instantaneous form of these states depends on the action of
U(t) and can be written exactly as:

|8M(t)〉 = U(t)|8M(T )〉 = S[η(t)] exp{ihK0}S[ρ0(T )]|k, n〉
= exp{iδ(t)〈K0〉}S[ρ(t)]|k, n〉 (9.1)

where

ρ(t) = η(t)+ ρ0(T )eih(t)

1− gη∗(t)ρ0(T )eih(t)
(9.2)

δ(t) = h(t)+ i log
1− gη∗(t)ρ0(T )eih(t)

1− gη(t)ρ∗0(T )e−ih(t)
(9.3)

whose average ‘energy’ is given by

〈8M(t)|H(t)|8M(t)〉 = 2
〈K0〉

1+ g|ρ|2 {(1− g|ρ|
2)Z − g(fρ∗ + f ∗ρ)} (9.4)

and so, the dynamical part of the phase takes the form:

Dk,n(T ) = −2
〈K0〉
h̄

∫ T

0

[1− g|ρ(t)|2]Z(t)− g[f (t)ρ∗(t)+ f ∗(t)ρ(t)]
1+ g|ρ(t)|2 dt (9.5)

and its geometrical part may be found by substracting the dynamical phase from the total
phase: β = λM(T ) − Dk,n(T ). In the above case we were dealing with a periodic
Hamiltonian and its periodic states this phase can be obtained alternatively by using the
time variation ofZ(t) [18]:

β = i
∫ T

0
〈8M(T )|Z+(t)Ż(t)|8M(T )〉. (9.6)

10. Example I: spin j in a magnetic field

We shall now consider two examples in which it is possible to apply the above-mentioned
formalism to characterize and construct cyclical and/or periodical states and their phases
and to study the two types of closed transformations, i.e. in parameter space and in Hilbert
space. First we shall consider a spinj -particle imbedded in a magnetic field which precesses
around thez-axis with an angular frequencyω

B = (B cosωt, B sinωt, B0). (10.1)

The dynamical symmetry of this system issu(2) and the characteristic functions are [10]:

f = −h̄
2
b exp−iωt Z = −h̄

2
b0 (10.2)

where we have calledµB = b andµB0 = b0. With these definitions we proceed to solve
in order, the following steps.
• Riccati equation.

η(t) = i
b

b1
sin{φ(t)} expi[φ(t)−ωt ] (10.3)

h(t) = −ωt + 2φ(t) (10.4)
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whereb1 = b0 + ω, ωc =
√
b2+ b2

1 andφ(t) is a time-dependent function defined by the
equation:

tan{φ(t)} = b1

ωc
tan

(
ωct

2

)
. (10.5)

• Instantaneous eigenstates and Berry phases. The parameter space is the sphere of

radius
√
b2+ b2

0 determined by the magnetic fieldB. When this magnetic field precesses
aroundZ draws the circumference defined by the intersection of the sphere with the plane
Z = b0. For an adiabatic precession ofB the transformation can be considered adiabatic
and the instantaneous eigenstates:

η0(t) = −2
b exp−iωt

b0+
√
b2+ b2

0

(10.6)

have a Berry phase of the form:

Bm =
∫ T

0

(
1− Z√

Z2+ |f |2

)
d(arg(f ))

dt
dt = −2mπ

1− b0√
b2+ b2

0

 (10.7)

that, as is described in [13], ism times the solid angle subtended from the origin by the
circumference defined above.
• Cyclic states. When a closed evolution in the Hilbert space is considered we shall find

the cyclic states of the system. For any value of the timeT the ortonormalized collection
of 2j + 1 states

|φm(T )〉 = S[ρ0(T )]|j,m〉 (10.8)

ρ0(T ) = i
x(T )

1+1(T ) (10.9)

x(T ) = i
b

b1

sin[φ(T )]

sin[φ(T )− ωT/2]
e−i ωT2 (10.10)

returnsT units of time after the interaction has been turned on. However, after the journey
they carry out a new phase of the form:

λm(T ) = 2m arg tan{1T tan[φ(T )− ωT/2]} (10.11)

whose geometrical and nonadiabatic contribution can be obtained by subtracting the exact
dynamical part:

Dm(T ) = m

ω2
c1T

[b0b1+ b2][b1+ bεT cos(ωT /2)]T − mωb

ω2
c1T

×
{

[b − b1εT cos(ωT /2)]
sin(ωcT )

ωc
− εT sin(ωT /2)[1− cos(ωcT )]

}
(10.12)

where we have called:

1T =
√

1+ |x(T )|2 (10.13)

εT = b

b1

sin[φ(T )]

sin[φ(T )− ωT/2]
. (10.14)

• Periodical states. The system is driven by a periodical Hamiltonian with a period
T = 2π

ω
but asη(t) is not a periodic functionU(t) cannot be reduced in the standard way.

Therefore in every cycle of the exact evolution of an eigenstate ofK0 this eigenstate does
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not return to the same state. Alsox(t) is not periodic but one can trivially show that it
verifies:

x
(

2s
π

ω

)
= i

b

b1
s, integer (10.15)

and the system posseses some2π
ω

-periodic states. Let us find them.
First we must realize that these states must be theS(− b

b1+ωc )|j,m〉 eigenstates of the
operator

M = b

2
(K+ +K−)+ b1K0 (10.16)

that in every cycle of evolution ofH(t) add global (dynamical and geometrical) phases

λm

(
2
π

ω

)
= 2mπ

(ωc
ω
+ 1

)
(10.17)

Dm

(
2
π

ω

)
= 2mπ

b0b1+ b2

ωωc
(10.18)

βm

(
2
π

ω

)
= 2mπ

(
b1

ωc
+ 1

)
. (10.19)

These states are equivalent to those described in [10] in the case of an electron. However,
they are not the only periodic states that may be considered. The nonperiodic functionη(t)

also verifies the property

η

(
2
π

ωc

)
= η(0) = 0 s, integer (10.20)

and the time evolution operator cyclically transports the eigenstates ofK0 with dynamical
and geometrical phases given by:

λm

(
2
π

ωc

)
= −2mπ

(
ω

ωc
+ 1

)
(10.21)

Dm

(
2
π

ωc

)
= 2mπ

b1(b0b1+ b2)

ω3
c

(10.22)

βm

(
2
π

ωc

)
= −2mπ

(
ω

ωc
+ b1(b0b1+ b2)

ω3
c

+ 1

)
. (10.23)

11. Example II: the degenerate optical parametric oscillator

The Hamiltonian of the system is well known [11, 24] and may be identified as a Hermitian
element of thesu(1, 1) algebra with the notation of section 4 and with characteristic
parameters:

f (t) = 2h̄ω0κ exp−2iω0t Z(t) = h̄ω0. (11.1)

The e±2iω0t factors represent the activation mode which will be treated as a classical external
field andκ is the real coupling constant.
• Riccati equation. Its exact solution is:

η(t) = −i tanh(2κω0t) exp−2iω0t h(t) = −2ω0t. (11.2)
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Figure 1.

• Cyclic states. For this system one can easily find:

x(T ) = i
tanh(2κω0T )

sin(ω0T )
e−iω0T (11.3)

1(T ) =
√

1− tanh2(2κω0T )

sin2(ω0T )
. (11.4)

From this one can deduce that there exist onlyT -cyclic states with characteristic timeT
defined by the inequality:

tanh2(2κω0T ) < sin2(ω0T ) (11.5)

that is represented in figure 1 for a particular value of the parameters. A variation in
the choice of the parameters does not affect qualitatively the following conclusions. The
distribution of the allowed times definingT -cyclic states clearly reminds one of the spectrum
of a particle in a periodic potential and its band structure. This is largely so owing to the
periodic nature of the time-dependent HamiltonianH(t). The similarity becomes more
evident if we consider the classical analogue of our system whose classical equations of
motion are:

q̈(t)+�2(t)q(t) = 0 (11.6)

�2(t) = ω2
0

1− 24κ2+ 4κ(1+ 8κ2) cos(2ω0t)− 16κ4 cos2(2ω0t)

[1− 2κ cos(2ω0t)]2
(11.7)

which shows an obvious correspondence with the Schrödinger equation for a periodic time-
dependent potential. ForT , one of the allowed times, theT -cyclic state vectors of the
system are:

|φn(T )〉 = S[ρ0(T )]|n〉 (11.8)

which, as has already been established, are unitarily related to the eigenstates of the oscillator
|n〉 by means of the displacement operator (7.7) withρ0(T ) given by (7.8) andx(T ) and
1(T ) given by (11.3) and (11.4) respectively. After an elapsed timeT the state acquires a
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total phaseλn(T ) which is the sum of a dynamical phaseDn(T ) and a geometrical phase
βn(T ) all three being given by the following expressions:

λn(T ) = −(n+ 1
2) arg tan

{√
1+ |x(T )|2 tan(ω0t)

}
(11.9)

Dn(T ) = −
n+ 1

2

2κ1T

tanh(2κω0T )

{
1− 4κ2ω0T

tan(ω0T )

}
(11.10)

βn(T ) = λn(T )−Dn(T ). (11.11)

• Periodic states. In our case the Hamiltonian is periodic with periodT = π
ω0

, but as
η(t) is not a periodic function,U(t) cannot be reduced to a phase operator for all possible
values ofs. Thus after each cycle of the exact evolution of a given state with a well-
defined photon number such a state does not come back over itself. Furthermore, as for this
particular value ofT we fall into a forbidden zone (see figure 1), we can safely conclude
that the degenerate optical parametric oscillator has noπ

ω0
-periodic states. On the other

hand, equation (8.1) does not hold forx(t) of (11.3) for any value ofs > 1. Hence each
state comes back over itself just once.
• Instantaneous eigenstates. Whenκ < 0.5 the system possesses a set of instantaneous

eigenstates with a characteristic parameter given by:

η0 = − 2κ

1+√1− 4κ2
exp−2iω0t (11.12)

that for sufficiently low frequencies (i.e. guaranteeing an adiabatic evolution of the system)
acquire after a timeπ

ω0
a phase whose dynamical and geometrical (Berry) contributions

depend upon the characteristic parameter and turns out to take the following explicit form:

Dn = −π(n+ 1
2)
√

1− 4κ2 (11.13)

Bn = π(n+ 1
2)

1−√1− 4κ2

√
1− 4κ2

. (11.14)

The value ofBn equals the flux of the vector

X(t) = Ref (t) Y (t) = Im f (t) Z(t) = h̄ω0 (11.15)

through the portion of the hyperboloid

Z2−X2− Y 2 = R2 (11.16)

bounded between its tip and the intersection planeZ(t) = h̄ω0. This plane cuts the
hyperboloid by drawing a circle in the (X, Y )-plane of radiusR = h̄ω0

√
1− 4κ2. This

is reminiscent of theSU(2) case in which the Berry phase is given by the flux through the
solid angle as it has been discussed before.

We refer the interested reader to a thorough discussion of these and other properties of
the phases in the case of the degenerate optical parametric oscillator which also contemplates
some possible experimental consequences [6].

12. Conclusions

In this paper we have discussed the conditions under which any physical system possessing
a dynamical symmetry can be instantaneously diagonalized and a well-defined set of
orthonormal eigenvectors can or cannot be obtained by the action of a generalized
displacement operator acting on the purely static eigenbasis ofK0: the one-parameter
Cartan subalgebra. The answer is that this can always be done if the dynamical symmetry is
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governed by the Lie algebra ofsu(2). However, if the dynamical symmetry is determined
by the Lie algebra ofsu(1, 1) the existence of this type of eigenvectors cannot always
be guaranteed. One needs to study whether the parameters of the Hamiltonian impose
additional conditions which have to be fulfilled for this eigenbasis to exist. We have hereby
given a general formalism for finding such a set of additional conditions.

The time evolution operator that yields this set of instantaneous eigenstates can also
be built in terms of a displacement operator whose characterization requires us to solve a
nonlinear riccati equation. When we linearize this equation one generally finds a harmonic
oscillator with a complex time-dependent frequency. In the casesu(1, 1), this frequency
is real and we end up simply with the classical equations of motion in the case where the
system would have a classical analogue. The quantum version of the problem may also be
solved just by using the classical solutions. After having done this we also show that the
time evolution operator can be used to characterize the possible cyclic states, the periodic
states and the necessary interaction time for making the evolution of the system either cyclic
and/or periodic. This discussion allows one to define the exact (as opposed to adiabatical)
phases that this transformation yields. It has been found in particular that forsu(2) and
by fixing an arbitrary interval of timeT it is always possible to find an orthonormal set of
T -cyclic states. Forsu(1, 1), however, this is not generally true.T -cyclic states only exist
for those values of timeT verifying certain conditions. A similar analysis has been carried
out for the case ofT -periodic physical systems.

Finally we have considered two particular and interesting examples: a spinj -particle
in a rotating magnetic field and the degenerate optical parametric oscillator. We have built
in both cases its cyclic and periodic states and the dynamical and geometric phases have
been calculated. In particular we have found that the initial eigenstates of a degenerate
optical parametric oscillator with sufficiently low frequency must incorporate in each cycle
of evolution of the optical field a nontrivial Berry phase depending upon the interaction
coupling constant between the electromagnetic field and the medium.

We believe that the discussions and results presented in this paper will be of interest to
elucidate the differences between adiabatical, cyclic and periodic states of a time-dependent
physical system. These differences are shown to be not just of conceptual origin but also
giving rise to exactly calculable phases which differ not only in origin but also in numerical
values. These and other predictions can now be tested experimentally either in optical
Hamiltonians or in spin systems of various kinds. The advantage of having a useful and
unified formalism to deal with at the same time as all of these different phenomena is not
the smallest contribution of this paper.
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